
SUPPORTING JAVASCRIPT
EXPERIMENTATION WITH BUGSJS

Béla Vancsics, Péter Gyimesi, Andrea Stocco, Davood Mazinanian,
Árpád Beszédes, Rudolf Ferenc, Ali Mesbah

MOTIVATION
JavaScript is the de-facto programming lan-
guage for the web, and the most adopted
one on GitHub. However, JavaScript is also
error-prone due to its asynchronous, dy-
namic, and loosely typed nature.
To support the evaluation of analysis and
testing techniques for this langauge, we cre-
ated BUGSJS, a benchmark of real JavaScript
bugs with corresponding test cases and other
artifacts. According to our literature review,
BUGSJS is the very first benchmark available
for the JavaScript domain.

BUGSJS
 

BugsJS Organization

...

Forked

...

Forked

Subject#N 
Fork

Source code 
Tests 
Cleaned patches 
Tagged bug fixes

Subject#N 
Original repository

Subject#1 
Fork

Source code 
Tests 
Cleaned patches 
Tagged bug fixes

Subject#1 
Original repository

bug dataset 
Repository 

Utility framework 
Bug statistics 
Test commands 
Bug report data 

docker environment 
Repository 

Pre -built environment 

We manually selected and validated 453
JavaScript bugs from 10 JavaScript Node.js
programs pertaining to the Mocha testing
framework. The bugs are all manually val-
idated and come with a comprehensive re-
port and one or more test cases that demon-
strate the bug. We have used the GitHub’s
fork feature to include the entire history of
the projects in BUGSJS. For each bug, we
created and tagged three additional com-
mits on top of the buggy version: only the
test changes applied; only the production
code fix applied; both the cleaned fix and
the test changes applied. We also devel-
oped a Docker-based infrastructure to down-
load, analyze, and run test cases exposing
each bug and the corresponding real fixes
implemented by developers.

kLOC Stars Commits Forks Bugs

Bower 16 15,290 2,706 1,995 3
ESLint 240 12,434 6,615 2,141 333
Express 11 40,407 5,500 7,055 27
Hessian.js 6 104 217 23 9
Hexo 17 23,748 2,545 3,277 12
Karma 12 10,210 2,485 1,531 22
Mongoose 65 17,036 9,770 2,457 29
Node-redis 11 10,349 1,242 1,245 7
Pencilblue 46 1,596 3,675 276 7
Shield 20 6,319 2,036 1,432 4

Total 444 137,493 36,791 21,432 453

POSSIBLE USE CASES

Testing techniques: BUGSJS includes more
than 25k JavaScript test cases, which can be
used for different regression testing studies,
such as test prioritization, software oracles,
or automated test repair.
Bug prediction: BUGSJS includes source
code various information pertaining to a
large set of bugs, which can be used to con-
struct bug prediction models. The availabil-
ity of both uncleaned and cleaned bug-fixing
patches in the dataset can allow assessing the
sensitivity of the proposed models to noise.
Bug localization: BUGSJS contains point-
ers to the natural language bug description

and discussions for several hundreds of bugs.
Text retrieval techniques such as NLP can be
also used to formulate a natural language
query that describes the observed bug, since
bugs are readily available. Also, Spectrum
Based Fault Localization experiments can be
easily performed.
Automated program repair: The manually
cleaned patches available in BUGSJS can be
used as learning examples for patch genera-
tion in novel automated program repair for
JavaScript. Also, BUGSJS provides an out-
of-the-box solution for automatic dynamic
patch validation.

EXAMPLE APPLICATION AND PRELIMINARY EVALUATION
We applied a Spectrum-Based Fault Localization (SBFL) technique, namely Tarantula, to one
of the subject programs in BUGSJS, Hessian.js, which includes nine bugs. BUGSJS’s API
provides an easy access to all information required for such an experiment: per-test coverage
using the per-test command, test results using the test command, and modified source code
elements using the tagged commits with the code fix only.

BugsJS

Changed
methods

FL ranks

Running testsBuggy version    
with test changes

Fixed version
without test changes

Getting changes

FL evaluation

Organization

Per­test 
coverage

Test results

We categorized the 9 bugs of the Hessian.js
project based on recurring bug-fix patterns
and compared it with the results of the SBFL
technique, hoping to gather insights on how
different types of bugs can be successfully lo-
calized. The Table below lists the Tarantula
ranks next the associated bug-fix patterns.
The results suggest that methods with the IF-
CC pattern have generally better ranks, how-
ever further experiments with more bug in-
formation are required to draw conclusions
about the correlation between bug patterns
and fault localization techniques.

Bug # Rank Method Pattern(s)

5 1 lib/v2/encoder.js:(anonymous_3)
2 2 lib/v2/decoder.js:(anonymous_15) IF-RMV
9 2 lib/v1/decoder.js:(anonymous_20) SQ-RMO
3 3 lib/v1/encoder.js:(anonymous_21) IF-APCJ
8 3 lib/utils.js:(anonymous_3) IF-CC
6 4,5 ib/v2/decoder.js:(anonymous_11) IF-APC
4 7 lib/v1/encoder.js:(anonymous_18) IF-CC
7 7 lib/v1/encoder.js:(anonymous_19) CF-CHG
1 7,5 lib/v2/encoder.js:(anonymous_11) MC-DNP, SQ-AMO
1 7,5 lib/v2/encoder.js:(anonymous_12) MC-DNP, SQ-RMO
6 8 lib/v1/decoder.js:(anonymous_20) IF-APC
2 9 lib/v1/decoder.js:(anonymous_20) IF-CC
1 41,5 lib/v2/encoder.js:Encoder CF-ADD
5 56,5 lib/v2/encoder.js:(anonymous_4) IF-APC

Let us consider Bug-2 of this project.
Based on the bug-fixing commit that
changed 9 lines of code, we can pre-
cisely identify the modified methods.
In this case, it involves two methods:
lib/v1/decoder.js:(anonymous_20) and
lib/v2/decoder.js:(anonymous_15). The
Table below reports the four metrics required
to compute Tarantula values and the final
scores for each of these methods. Results
are ranked according to increasing Taran-
tula scores. In our example, anonymous_20
is ranked ninth and anonymous_15 is ranked
second in the order of all methods. Since the
bug-fixing commit involves multiple meth-
ods, the lowest rank associated with all
changed methods determines the rank of the
bug which in this case is two.

Method mef mep mnf mnp Tarantula Rank

anonymous_15 1 6 1 167 0.93514 2
anonymous_20 1 23 1 150 0.78995 9

FUTURE ENHANCEMENTS
Expansion: We would like to add new, server-side JavaScript programs to the benchmark,
thus increasing the number of existing bugs.
Extension: In addition, we want to expand the scope of the programs examined by client-side
JavaScript web applications.
Support: We are planning to develop the framework, especially with the support of other
testing frameworks, so we can add new programs to the examination (and to the dataset).

AVAILABILITY

BUGSJS is available at
https://bugsjs.github.io


