SUPPORTING JAVASCRIPT
EXPERIMENTATION WITH BUGS]J S

Béla Vancsics, Péter Gyimesi, Andrea Stocco, Davood Mazinanian,

W
)

1
)

)
o
W
|

7

Arpéd Beszédes, Rudolf Ferenc, Ali Mesbah

MOTIVATION

JavaScript is the de-facto programming lan-
guage for the web, and the most adopted
one on GitHub. However, JavaScript is also
error-prone due to its asynchronous, dy-
namic, and loosely typed nature.

To support the evaluation of analysis and
testing techniques for this langauge, we cre-
ated BUGS]S, a benchmark of real JavaScript
bugs with corresponding test cases and other
artifacts. According to our literature review,
BUGS]S is the very first benchmark available
for the JavaScript domain.

BUGS]JS

BugsJS) Organization

Subject#1 Subject#N
Fork Fork

docker environment
Repository

bug dataset
Repository

Source code Source code Pre-built environment
Tests “*°| Tests Bug statistics
Cleaned patches Cleaned patches Test commands

Tagged bug fixes Tagged bug fixes | Bug report data

Utility framework

We manually selected and validated 453
JavaScript bugs from 10 JavaScript Node.js
programs pertaining to the Mocha testing
framework. The bugs are all manually val-
idated and come with a comprehensive re-
port and one or more test cases that demon-
strate the bug. We have used the GitHub’s
fork teature to include the entire history of
the projects in BUGSJS. For each bug, we
created and tagged three additional com-
mits on top of the buggy version: only the
test changes applied; only the production
code fix applied; both the cleaned fix and
the test changes applied. We also devel-
oped a Docker-based infrastructure to down-
load, analyze, and run test cases exposing
each bug and the corresponding real fixes
implemented by developers.

kLOC Stars Commits Forks Bugs
Bower 16 15,290 2,706 1,995 3
ESLint 240 12,434 6,615 2,141 333
Express 11 40,407 5,500 7,055 27
Hessian,js 6 104 217 23 9
Hexo 17 23,748 2,545 3,277 12
Karma 12 10,210 2,485 1,531 22
Mongoose 65 17,036 9,770 2,457 29
Node-redis 11 10,349 1,242 1,245 7
Pencilblue 46 1,596 3,675 276 7
Shield 20 6,319 2,036 1,432 4
Total 444 137,493 36,791 21,432 453

AVAILABILITY

BUGS]JS is available at
https://bugsjs.github.io

POSSIBLE USE CASES

Testing techniques: BUGSJS includes more
than 25k JavaScript test cases, which can be
used for different regression testing studies,
such as test prioritization, software oracles,
or automated test repair.

Bug prediction: BUGSJS includes source
code various information pertaining to a
large set of bugs, which can be used to con-
struct bug prediction models. The availabil-
ity of both uncleaned and cleaned bug-fixing
patches in the dataset can allow assessing the
sensitivity of the proposed models to noise.
Bug localization: BUGSJS contains point-
ers to the natural language bug description

and discussions for several hundreds of bugs.
Text retrieval techniques such as NLP can be
also used to formulate a natural language
query that describes the observed bug, since
bugs are readily available. Also, Spectrum
Based Fault Localization experiments can be
easily performed.

Automated program repair: The manually
cleaned patches available in BUGS]JS can be
used as learning examples for patch genera-
tion in novel automated program repair for
JavaScript. Also, BUGSJS provides an out-
of-the-box solution for automatic dynamic
patch validation.

EXAMPLE APPLICATION AND PRELIMINARY EVALUATION

We applied a Spectrum-Based Fault Localization (SBFL) technique, namely Tarantula, to one
of the subject programs in BUGS]JS, Hessian. js, which includes nine bugs. BUGSJS’s API
provides an easy access to all information required for such an experiment: per-test coverage
using the per-test command, test results using the test command, and modified source code
elements using the tagged commits with the code fix only.

Fixed version

\

Getting changes
wein g%
without test changes :

S

Buggy version

\

, —> Running tests
with test changes |

M Changed
methods FL evaluation
Per-test
coverage

-]

B u g S J S O Organization

FL ranks

></XT

Test results

We categorized the 9 bugs of the Hessian. js
project based on recurring bug-fix patterns
and compared it with the results ot the SBFL
technique, hoping to gather insights on how
different types of bugs can be successtully lo-
calized. The Table below lists the Tarantula
ranks next the associated bug-fix patterns.
The results suggest that methods with the IF-
CC pattern have generally better ranks, how-
ever further experiments with more bug in-
formation are required to draw conclusions
about the correlation between bug patterns

and fault localization techniques.
Bug # Rank Method Pattern(s)

lib/v2/encoder.js:(anonymous_3)
lib/v2/decoderjs:(anonymous_15) IF-RMV
lib/v1/decoder.js:(anonymous_20) SQ-RMO
lib/v1/encoderjs:(anonymous_21) IF-APC]
lib /utils.js:(anonymous_3) IF-CC
4,5 ib/v2/decoderjs:(anonymous_11) IF-APC
lib/v1/encoder,js:(anonymous_18) IF-CC
7 lib/vl/encoder.js:(anonymous_19) CF-CHG
7,5 lib/v2/encoder.js:(anonymous_11) MC-DNP, SQ-AMO
7,5 lib/v2/encoder.js:(anonymous_12) MC-DNP, SQ-RMO
8 lib/v1/decoder.js:(anonymous_20) IF-APC
9 lib/vl/decoderjs:(anonymous_20) IF-CC
41,5 lib/v2/encoder.js:Encoder CF-ADD
56,5 lib/v2/encoder.js:(anonymous_4) IF-APC

LW

QI —L, NP RPN WNWODN O

FUTURE ENHANCEMENTS

Let us consider Bug-2 of this project.
Based on the bug-fixing commit that
changed 9 lines of code, we can pre-
cisely identity the moditied methods.
In this case, it involves two methods:
lib/vl/decoder. js: (anonymous_20) and
1lib/v2/decoder. js: (anonymous_15). The
Table below reports the four metrics required
to compute Tarantula values and the final
scores for each of these methods. Results
are ranked according to increasing Taran-
tula scores. In our example, anonymous_20
is ranked ninth and anonymous_15 is ranked
second in the order of all methods. Since the
bug-fixing commit involves multiple meth-
ods, the lowest rank associated with all
changed methods determines the rank of the
bug which in this case is two.

Method

Met Mep Mpf My, larantula Rank

167 0.93514 2
150 0.78995 9

anonymous_15 1 6 1
anonymous_20 1 23 1

Expansion: We would like to add new, server-side JavaScript programs to the benchmark,

thus increasing the number of existing bugs.

Extension: In addition, we want to expand the scope of the programs examined by client-side
JavaScript web applications.
Support: We are planning to develop the framework, especially with the support of other
testing frameworks, so we can add new programs to the examination (and to the dataset).

